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Figure 1. A scene created by our method on the left compared to baseline ProlificDreamer [64] on the right. RealmDreamer generates
3D scenes from text prompts (as above), achieving state-of-the-art results with parallax, detailed appearance, and realistic geometry.

Abstract

We introduce RealmDreamer, a technique for generat-
ing forward-facing 3D scenes from text descriptions. Our
method optimizes a 3D Gaussian Splatting representation to
match complex text prompts using pretrained diffusion mod-
els. Our key insight is to leverage 2D inpainting diffusion
models conditioned on an initial scene estimate to provide
low variance supervision for unknown regions during 3D
distillation. In conjunction, we imbue high-fidelity geome-
try with geometric distillation from a depth diffusion model,
conditioned on samples from the inpainting model. We find
that the initialization of the optimization is crucial, and pro-
vide a principled methodology for doing so. Notably, our
technique doesn’t require video or multi-view data and can
synthesize various high-quality 3D scenes in different styles
with complex layouts. Further, the generality of our method
allows 3D synthesis from a single image. As measured by a
comprehensive user study, our method outperforms all ex-
isting approaches, preferred by 88-95%.

1. Introduction

Text-based 3D scene generation has the potential to revo-
lutionize 3D content creation, with broad applications in
virtual reality, game development, and even robotic simu-
lation. However, unlike text-based 2D generative models,
3D data is scarce and lacks diversity, which greatly limits
the development of generative 3D techniques. Ideally, one
can mitigate this by leveraging rich 2D priors for 3D gen-
eration instead. Indeed, object-generation techniques such
as DreamFusion [44] and ProlificDreamer [64] do just this,
by distilling 2D diffusion priors into a 3D representation,
with the latter even demonstrating early abilities to gener-
ate scenes. Unfortunately, such distillation approaches can
often have saturated results, poor geometry, and lack detail,
which become very apparent in the more challenging set-
ting of scene generation (Fig. 2). This leaves the question:
How to design a distillation technique for high-quality 3D
scene generation from pretrained 2D priors?

A common observation from distillation based object-
generation techniques is that greater 3D consistency in 2D
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Figure 2. Our method, compared to state-of-the-art ProlificDreamer [64] and concurrent work LucidDreamer [14], shows significant
improvements. ProlificDreamer yields unsatisfactory geometry and oversaturated renders. LucidDreamer, receiving the same input as our
method and an updated depth model [30], displays degeneracy in disoccluded regions, such as the right side of the bed. In contrast, our
approach produces visually appealing 3D scenes with realistic geometry.

diffusion models results in higher-quality distillation, as
they provide lower-variance supervision during optimiza-
tion. As a result, many methods use 2D diffusion models
fine-tuned on 3D data [16], such as for novel-view synthe-
sis [21, 37, 45]. Equivalent 3D scene datasets are scarce
however, which limits the generalization of such techniques
to scenes. Alternatively, ProlificDreamer [64] fine-tuned
a diffusion model during distillation to be more 3D consis-
tent, producing more highly-detailed textures than before.
In this work, we introduce a technique to achieve these
strengths without requiring 3D training data or fine-tuning
existing 2D diffusion models.

We introduce RealmDreamer, a technique for high-
fidelity generation of 3D scenes from text prompts (Fig. 1).
Our key insight is that we can obtain a 3D scene-aware dif-
fusion model for free, by simply re-appropriating 2D in-
painting diffusion models. Typically, 2D inpainting models
condition on a partial image to fill in the rest. Instead, we
demonstrate that such models can also condition on a 3D
scene and fill in unknown regions for novel view synthesis
through our proposed inpainting distillation process. As a
result, we obtain high-quality 3D scenes with considerably
improved detail and appearance over prior distillation tech-
niques. Further, we propose a simple initialization strategy
that provides a 3D scene to use as conditioning for this dis-
tillation and serves as an initial point cloud for the 3DGS
model. We evaluate our technique on several quantitative
metrics and obtain significantly higher quality results than
prior work, as notably shown by a user study where we
are preferred over state-of-the-art ProlificDreamer [64] by
95.5%. Concretely, our contributions are the following:

1. An occlusion-aware scene initialization for 3DGS, es-
sential for obtaining high-quality scenes (Sec. 4.1).

2. A framework for distillation from 2D inpainting diffu-
sion models which conditions on the existing scene, pro-
viding lower variance supervision (Sec. 4.2).

3. A method for geometry distillation from diffusion-based

depth estimators for higher-fidelity geometry. (Sec. 4.3).

4. State-of-the-art results in text-based generation of 3D
scenes, as confirmed by several quantitative metrics and
a user study (see Fig. 6, Tab. 1, Tab. 2).

2. Related Work

Text-to-3D. The first methods for text-to-3D generation
were based on retrieval from large databases of 3D as-
sets [9, 10, 15]. Subsequently, learning-based methods have
dominated [1, 11, 36]. However, due to the dearth of di-
verse paired text and 3D data, many recent methods lever-
age 2D priors, such as CLIP [27, 53] or text-to-image diffu-
sion models [13, 33, 44, 63, 64, 67]. These distill knowl-
edge from 2D priors into a 3D representation, through vari-
ations on Dreamfusion’s score distillation sampling (SDS)
[44]. However, these techniques have primarily been lim-
ited to object synthesis. In contrast, there are iterative tech-
niques that incrementally build 3D scenes [14, 26] or 3D-
consistent perpetual views [18], but can struggle with high
parallax. Our proposed technique builds on strengths from
distillation and iterative techniques to produce large scale
3D scenes with high parallax using pretrained 2D priors.

View Synthesis with Diffusion and 3D inpainting. Mo-
tivated by the success of SDS, several techniques generate
3D objects from a single image by leveraging image-guided
diffusion models to generate novel views and distill to
3D [17, 70]. When trained on larger datasets [16], with bet-
ter conditioning architectures, these approaches [37, 38, 54—
56] can produce higher quality novel view renders with
sharper texture. Some methods also condition denoising di-
rectly on renderings from 3D consistent models [8, 21] for
view synthesis in a multi-view consistent manner. Unfor-
tunately, most techniques rely on object-level data, limiting
their use for text-based scene synthesis. 3D inpainting tech-
niques [41, 42] also leverage image-guided diffusion mod-
els to remove small objects in scenes. Other works focus on



Figure 3. Overview of our technique. Our technique first uses a text prompt and an image to build a point cloud (Sec. 4.1), which is then
completed during the inpainting stage (Sec. 4.2) with an additional depth diffusion prior (Sec. 4.3), and finally a refinement stage (Sec. 4.4)

to improve the scene’s coherence.

training custom inpainting models for indoor scenes [32] or
objects [28] to generate novel views. In contrast to these, we
leverage pre-trained text-guided inpainting priors and focus
on generating large missing regions of diverse scenes with
our novel inpainting distillation loss.

Concurrent work. In the rapidly evolving text-to-3D
field, we focus on the most relevant concurrent works,
highlighting our key differences. LucidDreamer [14] and
Text2NeRF [68] uses an iterative approach similar to Pix-
elSynth [49] and Text2Room [26] to generate 3D scenes
but displays limited parallax. Considering LucidDreamer
as the most relevant concurrent baseline, we compare it in
the fairest setting possible, by using newer depth estima-
tors [30, 65], and surpass it by 88.5% in our user study.
Most recently, in follow-up work, CAT3D [20], utilizes a
diffusion model finetuned on multiview datasets to generate
multiple views from a single image. In contrast, our entire
pipeline does not use multiview images.

3. Preliminaries
3.1. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [31] has recently emerged as
an explicit alternative to NeRF [40], offering extremely fast
rendering speeds and a memory-efficient backwards pass.
In 3DGS, a set of splats are optimized from a set of posed
images. The soft geometry of each splat is represented by a
mean i € R3, scale vector s € R3, and rotation R parame-
terized by quaternion ¢ € R, so that the covariance of the
Gaussian is given by ¥ = RSST RT where S = Diag(s).
Additionally, each splat has a corresponding opacity o € R

and color ¢ € R3.

The splats {©,}Y, = {u;,si,q,0:, ¢}, are pro-
jected to the image plane where their contribution «; is
computed from the projected Gaussian (see [72]) and o;.
A pixel’s color is obtained by «a-blending Gaussians sorted
by depth:

N i—1
C=> aic; [J(1 - ). (1)
i=1 j=1

A significant drawback of 3DGS-based approaches is the
necessity of a good initialization. State-of-the-art results are
only achieved with means y; initialized by the sparse depth
of Structure-from-Motion [57], which is not applicable for
scene generation. To address this challenge, we generate a
prototype of our 3D scene using a text prompt, which we
then optimize (Sec. 4.1).

3.2. Conditional Diffusion Models

Diffusion models [25, 29, 58-61] are generative models
which learn to map noise 7 ~ N(0,I) to data by itera-
tively denoising a set of latents x; corresponding to decreas-
ing noise levels ¢ using non-deterministic DDPM [25] or de-
terministic DDIM sampling [59], among others [29, 60, 61].

Given ¢, a diffusion model ¢y is trained to predict the
noise € added to the image such that we obtain ey(x¢,t),
which approximates the direction to a higher probability
density. Often, the data distribution is conditional on quan-
tities such as text 7' and images I, so the denoiser takes
the form €y (¢, I, T). In the conditional case, classifier-free
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Figure 4. Progression of 3D Model after each stage. We show how the 3D model changes after each stage in our pipeline. As shown in a)
Stage 1 (Sec. 4.1) creates a point cloud with many empty regions. In b), we show the subsequent inpainted model from Stage 2 (Sec. 4.2).
Finally, the fine-tuning stage (Sec. 4.4) refines b) to produce the final model, with greater cohesion and sharper detail.

guidance is often used to obtain the predicted noise [6, 24]:

éa(xtaIaT) = 69(xt7®a®)
+S’I-(eg(xt,I,(Z))—eg(xt,@,@)) (2)
+ ST : (60($t7[7 T) - 69(2t7 Ia Q))

where () indicates no conditioning, and the values S; and
St are the guidance weights for image and text, dictating
fidelity towards the respective conditions. In the case of la-
tent diffusion models like Stable Diffusion [50], denoising
happens in a compressed latent space by encoding and de-
coding images with an encoder £ and decoder D.

Score Distillation Sampling. Distilling text-to-image
diffusion models for text-to-3D generation of object-level
data has enjoyed great success since the introduction of
Score Distillation Sampling (SDS) [44, 63]. Given a
text prompt 7" and a text-conditioned denoiser eg(z,T),
SDS optimizes a 3D model by denoising noised render-
ings. Given a rendering from a 3D model x, we sam-
ple a timestep and corresponding z;. Considering & =
ait(:ct — oeg(wy, T)) as the detached one-step prediction
of the denoiser, SDS is equivalent to minimizing [71]:

Lys = Eq ¢ [w(t) |z — ‘%Hg} 3)

where w(t) is a time-dependent weight over all cameras
with respect to the parameters of the 3D representation,
and the distribution of ¢ determines the strength of added
noise. In this work, we use a variation of SDS to distill
from pretrained-inpainting models (Sec. 4.2)

4. Method

We now describe our technique in detail, which broadly
consists of three stages: initialization (left of Fig. 3,
Sec. 4.1); inpainting (middle of Fig. 3, Sec. 4.2) with depth
distillation (middle of Fig. 3, Sec. 4.3); and finetuning
(right of Fig. 3, Sec. 4.4). Given a text-prompt Ti.s and

camera poses, we initialize the scene-level 3DGS represen-
tation {©, }¥, leveraging 2D diffusion models and monoc-
ular depth priors, along with the computed occlusion vol-
ume (Sec. 4.1). With this robust initialization, we use 2D
inpainting models to predict novel views, distilling to 3D
to create a complete 3D scene (Sec. 4.2). In this stage, we
also incorporate depth distillation for higher-quality geome-
try (Sec. 4.3). Finally, we refine the model with a sharpness
filter on sampled images to obtain high-quality 3D samples
(Sec. 4.4). The result from these stages are shown in Fig. 4.

4.1. Initializing a Scene-level 3D Representation

Our technique utilizes 3DGS for text-conditioned optimiza-
tion, making a good initialization essential. A common
strategy in this setting is to initialize with a sphere [34, 44]
but the density of a scene is more complex and distributed.
Hence, we leverage pretrained 2D priors to synthesize a ro-
bust initialization (left of Fig. 3).

Concretely, we first generate a reference image of the
scene I,y from the text prompt 7).,y with a state-of-the-art
text-to-image-model. We then employ a monocular depth
model [30] D to lift this image to a pointcloud P from cor-
responding camera pose P,..y. Depending on the generated
image, the extent of the pointcloud can vary widely. To
make the initialization more robust, we outpaint I,.y by
moving the camera left and right of P..r to poses Pyyz.
We use an inpainting diffusion model [50] to fill in the un-
seen regions which are lifted to 3D using D. The union of
all generated points thus becomes P.

Determining Incomplete Regions. Given the initial
point cloud P, we then precompute the undetermined 3D
region, or the occlusion volume O, which is the set of voxel
centers within the scene’s occupancy grid which are oc-
cluded by the existing points in P from P,..r. We use O
when computing inpainting masks later and define the ini-
tialization of our 3DGS means as

{Mi}ilil =PUO. S



prompt

“A bear sitting in
a classroom with
a hat on, realistic,
4k image, high
detail”

“A thick elven
forest, fantasy art,
landscape,
picturesque, 4k
image”

Figure 5. Qualitative Results. In the left column, we show the input prompt for our technique. In the next two columns, we show the
renderings from our 3D model from different viewpoints. In the fourth column, we show the level of agreement between rendering and
geometry by a split view of the rendering and depth. Finally, in the last column, we show the depth map.

More details can be found in the supplementary.

4.2. Inpainting Diffusion for 3D-Conditioned Dis-
tillation

Since our initialization is generated from sparse poses,
viewing it from novel viewpoints exposes large holes in
disoccluded regions (Fig. 4). We resolve this with a novel
inpainting distillation technique, that conditions a 2D in-
painting diffusion model €jnpaine [50] on the existing scene
to complete missing regions. The model takes as input a
noisy rendering z; of {©;}Y ,, and is conditioned by the
text prompt Ties, an occlusion mask Mo, and the point
cloud render Ij,.. Sampling from this model results in novel
views £ which plausibly fill in the holes in the renderings
while preserving the structure of the 3D scene (Fig. 3).

Conditioning the inpainting model. To compute the
conditioning mask Moyc fOr €jnpaini, We render the point
cloud P and the precomputed occlusion volume O. We set
all components of M, for which the occlusion volume is
visible from the target to 0, and 1 otherwise. Note that this
handles cases such as the point cloud occluding itself (see
the supplement for a visualization).

Computing the inpainting loss. Our 2D inpainting dif-
fusion model €inpaine [50] operates in latent space, thus addi-
tionally parametrized by its encoder £ and decoder D. We
render an image x with the initialized 3DGS model, and en-
code it to obtain a latent z, where z = £(z). We then add
noise to this latent, yielding z;, corresponding to a randomly
sampled timestep ¢ from the diffusion model’s noise sched-
ule. Using these quantities, we take multiple DDIM [59]
steps from z; to compute a clean latent 2 corresponding to

the inpainted image.

We define our inpainting loss in both latent space and
image space, by additionally decoding the predicted latent
to obtain & = D(2). We compute the L2 loss between the
latents of the render and sample, as well as an L2 and LPIPS
perceptual [69] loss between the rendered image and the
decoded sample. To prevent edits outside of the inpainted
region, we also add an anchor loss on the unmasked region
of z, as the L2 difference between x and original point cloud
render I,,.. Our final inpainting loss is

Linpaint = )\latem”Z - 2”% + /\imageHx - JE”%

N &)
+ )\lpipsLPIPS (JJ, $) + )\anchorHMoccl(x - Ipc)”%

with A weighting the different terms. We discuss the

similarity of this loss with SDS in the supplemetary.

Discussion. In contrast to existing iterative methods
which utilize inpainting (such as Text2Room and Lucid-
Dreamer), our framework does not iteratively construct a
scene with inpainting. In practice, sampling from inpaint-
ing models often produces artifacts (such as due to out-of-
distribution masks), which iterative approaches can amplify
when generating from new poses. In contrast, due to scene-
conditioned multiview optimization, we obtain cohesive 3D
scenes and do not progressively accumulate errors. More-
over, in contrast to DreamFusion and ProlificDreamer, our
method utilizes a scene-conditional diffusion model, pro-
viding lower variance updates for effective optimization
(see row 2 of Fig. 7). This avoids the high-saturation and
blurry results that are typically found (Fig. 6).
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Figure 6. Qualitative Comparisons. Our technique shows superior quality in appearance and geometry than all baselines. Please see the
supplementary for more comparisons. Prompt: “A boy sitting in a boat in the middle of the ocean, under the milkyway, anime style”.

4.3. Depth Diffusion for Geometry Distillation

To improve the quality of generated geometry, we incorpo-
rate a pretrained geometric prior to avoid degenerate solu-
tions. Here, we leverage monocular depth diffusion models
and propose an additional depth distillation loss (middle of
Fig. 3). Crucially, we integrate this with our inpainting dis-
tillation by conditioning the depth model €gepn on the afore-
mentioned samples & from €jypaint.

Our insight is that these samples & act as suitable,
in-domain, conditioning for the depth diffusion model
throughout optimization, while renders x can be incoherent
before convergence. Further, this ensures that predictions
from €gepin are aligned with €ippaine despite not using a RGBD
prior. Starting from pure noise d; ~ N(0, I), we predict
the normalized depth using DDIM sampling [59]. We then
compute the (negated) Pearson Correlation between the ren-
dered depth and sampled depth:

L Y(di— 2 d)(di = £ dy)
VW~ L Y d)2 Y~ £ d)?

(6)

Ldepth =

where d is the rendered depth and n is the number of pixels.

4.4. Optimization and Refinement

The final loss for the first training stage of our pipeline is
thus:

Lipiy = Linpaint + Ldepth~ (7)

After training with this loss, we have a 3D scene that
roughly corresponds to the text prompt, but which may
lack cohesiveness between the reference image I,..; and
the inpainted regions (see Fig. 4). To remedy this, we in-
corporate an additional lightweight refinement phase. In
this phase, we utilize a vanilla text-to-image diffusion
model € personalized for the input image with Dream-
booth [17, 39, 47, 51]. We compute & using the same pro-
cedure as in Sec. 4.2, except with €. The loss Ly is the
same as Eq. (5), except with the 2 and & sampled with this
finetuned diffusion model €.x;. Note that the noise added to
the renderings at this stage is smaller to combat the higher
variance samples from the lack of image conditioning.

We also propose a novel sharpening procedure: instead
of using Z to compute the image-space diffusion loss intro-
duced earlier, we use S(&), where S is a sharpening filter
applied on samples from the diffusion model. Finally, to
encourage high opacity points in our 3DGS model, we in-
corporate an opacity loss Lopacity per point that encourages a
point’s opacity to reach either 0 or 1, inspired by the trans-
mittance regularizer used in Plenoxels [19]. The combined



loss for the fine-tuning stage is:

Lreﬁne = Ltext + )\opacityLopacitya (8)

where Agpacity controls the effect of the opacity loss.

4.5. Implementation Details

Point Cloud Initialization. We implement this stage
(Sec. 4.1) in Pytorch3D [48], with Stable Diffusion [50]
for outpainting. To lift the generated images to 3D, we use
Marigold [30], a monocular depth estimation model. Since
it predicts relative depth, we align its predictions with the
metric depth predicted by DepthAnything [65].

Inpainting and Refinement Stage.  Our inpainting
(Sec. 4.2) and refinement stages (Sec. 4.4) are implemented
in NeRFStudio [62] using the official implementation of
Gaussian Splatting [31]. We use Stable Diffusion 2.0 as
€ext and its inpainting variant as €jnpaint, building on three-
studio [22] to define our diffusion-guided losses. Further,
we use Marigold [30] as our depth diffusion model. During
the inpainting stage, we set the guidance weight for image
and text conditioning of €jnpaine as 1.8 and 7.5 respectively,
and sample the timestep ¢ from 2/(0.1,0.95). We find that a
high image guidance weight produces samples with greater
overall cohesion. We also use a guidance weight of 7.5 for
the text-to-image diffusion model €y during the refinement
stage, sampling noise from ¢/(0.1,0.3).

Timing. The first stage, currently unoptimized, takes 2.5
hours. The inpainting stage, trained for 15,000 iterations,
runs for 8 hours on a 24GB Nvidia A10 GPU. The refine-
ment stage, at 3,000 iterations, completes in 2.5 hours on
the same GPU.

5. Results

We evaluate our technique on a custom dataset of 20
prompts, and associated camera poses P;, selected to show-
case parallax and disocclusion. We built this dataset by
creating a set of 20 prompts, and having a human expert
manually choose camera poses using a web-viewer [02], by
displaying a scene prototype obtained as in Sec. 4.1. No
such dataset already exists for this problem, as existing text-
to-3D techniques [44, 64] typically operate with spherical
camera priors. Please refer to the supplemental video re-
sults to see the generated scenes.

5.1. Qualitative Results

We show some qualitative results in Fig. 5 with additional
results in the supplementary, demonstrating effective 3D
scene synthesis across various settings (indoor, outdoor)
and image styles (realistic, fantasy, illustration). We would
like to highlight the rendering quality and the consistency
of rendering and geometry, underscoring our method’s use
of inpainting and depth priors.

'A marble bust in a museum with pale teal walls, framed
paintings, marble patterned floor, 4k image"

Figure 7. Ablation Results. We show the qualitative results of
our model and its ablations. Arrows indicate failures in the ablated
models. Please see Sec. 5.5 for a detailed discussion of the ablated
components and their respective importance.

5.2. Comparisons

We compare our technique with state-of-the-art for text-
to-3D that use either distillation or iterative approaches:
DreamFusion [44], ProlificDreamer [64], Text2Room [26],
and concurrent work LucidDreamer [14] (Fig. 6). Both
ProlificDreamer and DreamFusion generate oversaturated
scenes with incorrect geometry and scene structure. On
the other hand, Text2Room fails to construct non-room
scenes, as it deviates from the input prompt during genera-
tion. Similarly, LucidDreamer’s [14] scenes lack cohesion,
with noisy results in occluded regions. Note that Lucid-
Dreamer and Text2Room take an image as input; we gave
these baselines the same input image as to ours and updated
their depth models.



5.3. User Study

To validate the quality of our generated 3D scenes, we con-
duct a user study (Tab. 1), similar to prior work [12, 35, 64].
We conducted a study on Amazon Mechanical Turk and re-
cruited 20 participants with a ‘master’ qualification to com-
pare each baseline, while following several guidelines out-
lined in [7]. The details can be found in the supplementary.
Participants overwhelmingly prefer results from our tech-
nique over baselines.

Table 1. Results of user study. We show the percentage of
comparisons where our technique was preferred over baselines:
PD [64], DF [44], T2R [26], and LD [14].

Ours vs. PD Ours vs. DF Ours vs. T2R Ours vs. LD
95.5% 94.5% 88% 88.5%

Table 2. CLIP alignment scores and additional metrics for
scene renderings of our method and the baselines. CLIP scores
are scaled by 100. Higher is better for all metrics.

Method CLIP Depth Pearson IS

Ours 31.69 0.89 6.99
Text2Room [26] 28.11 0.77 5.10
DreamFusion [44] 29.48 0.09 6.80
ProlificDreamer [64] 29.39 0.16 6.89
LucidDreamer [14] 29.97 0.80 5.73

5.4. Quantitative Metrics

We also provide a quantitative comparisons with all base-
lines based on alignment to the text prompt using CLIP [46],
Inception Score [52] on renderings, and the quality of ge-
ometry with the pearson correlation between rendered depth
and the predicted depth by DepthAnythingV2 [66]. We note
that due to the lack of ground truth data, standard recon-
struction metrics such as PSNR or LPIPS [69] do not apply.
We compute these scores for renderings from the same tra-
jectory and the corresponding prompt for all scenes. As
Text2Room’s results degrade significantly away from the
initial pose, we compare with a render from the initial pose
for CLIP. As shown in Tab. 2, our method shows signifi-
cantly better performance across all metrics.

5.5. Ablations

We verify the proposed contributions of our method by ab-
lating the key components in Fig. 7 with the specified
prompt (Tab. 3). In the first row, we show our method. In
the second row, we show the importance of the low variance
samples from the inpainting diffusion model (Sec. 4.2).
Distillation with a vanilla text-to-image model as in the
final stage, results in high-variance samples causing the

ours novel view ours novel view

o |

T

I [

Figure 8. Result for single-image to 3D. Using a provided image
and a prompt obtained via an image captioning model, our tech-
nique can generate a 3D scene and fill in occluded regions.

3DGS representation to diverge. In the third row, we re-
move Lgep; this results in incorrect geometry and incoher-
ent renderings. Note in particular the discrepancy in the
background when viewing from left versus right. In the
fourth row, we initialize our method using only the refer-
ence image I,y without outpainting at the neighbouring
poses Pyx. This results in poor results in the correspond-
ing regions, as they lack a good initialization. Finally, in
the last row, we show our result without using the p initial-
ization from Eq. (4), which results in divergence.

Table 3. Ablation Study Results showing the impact of different
components on Depth Pearson correlation and CLIP score. CLIP
scores are scaled by 100. Higher is better for both metrics.

Ablation Depth CLIP
No Depth Loss 0.86 31.55
No Initialization 0.42 20.31
No Inpainting 0.50 21.14
No Outpainting 0.79 31.00
Ours 0.90 33.10

5.6. Application: Single image to 3D

Our technique extends to creating 3D scenes from a single
image, as shown in Fig. 8, by using a user’s image as I,..y
and a text-prompt 7.y obtained using an image-captioning
model. Our pipeline can effectively fill in occluded areas
and generate realistic geometry for unseen regions.

6. Conclusion

We have proposed RealmDreamer, a method for gener-
ation of forward-facing 3DGS scenes leveraging inpaint-
ing and depth diffusion. Our key insight was to leverage
the lower variance of image conditioned (inpainting) dif-
fusion models for synthesis of 3D scenes, providing much
higher quality results than existing baselines as measured by
a comprehensive user study. Still, limitations remain; our
method takes several hours, and produces blurry results for
complex scenes with significant disocclusion. Future work
may explore efficient diffusion models for faster training,
and conditioning for 360-degree generations.
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Ethical Considerations

While we use pretrained models for all components of our
pipeline, it is important to acknowledge biases and ethical
issues that stem from the training of these large-scale image
generative models [50]. As these models are often trained
on vast collections of internet data, they can reflect negative
biases and stereotypes against certain populations, as well
as infringe on the copyright of artists and other creatives. It
is essential to consider these factors when using these mod-
els and our technique broadly.

A. Why is the occlusion volume important?

Our key contribution is the inpainting distillation loss that
provides lower variance and high-quality supervision for
text-to-3D, compared to regular text-to-image model based

Novel View and
‘e Tmage (inset)

Point Cloud Depth with

Raw Point Cloud Depth Oceluded Volume

Figure 9. Creating the Inpainting Mask. 3D inpainting requires
filling in a 3D volume, which is not always equivalent to missing
regions in 2D point cloud renders. By computing an occlusion
volume, we avoid situations where the floor is visible through the
table (middle) but instead could be occluded. The right depth map
accounts for the ambiguity of the volume in the table.

12

distillation, as shown in the ablations. Given that we use 2D
inpainting models for 3D inpainting via this distillation, we
must ask: how to compute the 3D region that needs to be
inpainted?

We proposed a simple technique to do so by computing
the occluded volume (described in Appendix D.2), which
is the 3D region occluded by objects in the reference image
I.r. Note that regardless of what objects may be present in
this occluded region, rendering from P,s would yield Iy,
as elements in the image would occlude the objects. The
2D inpainting masks we obtain then must hence, reflect this
unknown 3D region, as that is the part of the scene left to
complete.

Instead of computing the occlusion volume, another al-
ternative is using the holes from point cloud renderings as
the inpainting mask. Indeed, these holes also represent un-
known 3D regions. However, the 3D region indicated by
such 2D masks is a subset of the occluded 3D region and
hence, incomplete. This is shown in Fig. 9, which shows the
masked point cloud depth, where the masked region rep-
resents the inpainting mask. When using the holes in the
point cloud as an inpainting mask, one can observe that the
back side of the kitchen table is visible. In reality, a solid
kitchen table would never expose this face. In contrast, us-
ing the occlusion volume, we can correctly determine the
entire 3D region missing in I.f, which can be visually veri-
fied by comparing images. Specifically, the latter takes into
account self-occlusion, providing a more accurate estimate
and allowing details to fill into the occluded region.

In practice, such self-occlusions do not appear for all
prompts yet is important to maintain the correctness of the
3D inpainting formulation. If there are many renderings
such as in Fig. 9, the quality of inpainted samples would be
incorrect and lead to a noisier distillation process.

B. Discussion on Baselines

We are among the first to tackle text-to-3D scenes and
showcase a high-level of parallax. As aresult, there are lim-
ited open-source 3D scene generation techniques to com-
pare with. We choose to compare with techniques that ei-
ther use distillation - a key part of our pipeline and iterative
approaches - which shares similarity with the initialization
technique we use.

B.1. Comparison with Dreamfusion and Prolific-
Dreamer

By comparing with prior SOTA distillation techniques [44,
64], we demonstrate that these approaches are suboptimal



for scene generation, which has not been demonstrated be-
fore. Arguably, distillation techniques should be able to
build any 3D scene since the 2D priors used are general, as-
suming object-centric regularizers and prompts are absent.
However, we empirically find that simple distillation from
text-to-image models is insufficient for wide baselines. This
comparison highlights the importance of our inpainting dis-
tillation, which conditions on a partial 3D scene, enabling
high level of parallax not seen in prior work.

We also note that ProlificDreamer [64] first showcased
scene-level results using distillation, indicating that distilla-
tion is not purely for object-generation. Still, it presented
a limited set of scenes and did not show high parallax as it
focused on rotating a camera through a scene. Our base-
line comparison attempts to test the performance of this ap-
proach on wide camera trajectories and finds that it often
produces hazy results.

B.2. Relation between SDS and our distillation

Our distillation is similar to the score distillation loss (SDS)
used in Dreamfusion [44]. However, unlike prior work, we
do not use just text conditioning, but also renders from the
point cloud. As a result, the classifier-free guidance weight
we is much lower - at 7.5, avoiding over-saturated results
typically found with SDS. Further, unlike SDS which de-
noises noisy renders in one step, we take multiple steps with
DDIM sampling. Further, we also use a loss on the denoised
latent and decoded image, to produce high quality supervi-
sion.

B.3. Comparison with LucidDreamer and
Text2Room

Our initialization step is a key part of the pipeline and rem-
iniscent of prior and concurrent iterative techniques which
incrementally grow a scene. Yet, such techniques have yet
to showcase high quality over high-parallax camera trajec-
tories, which we demonstrate. We find that incremental
generation of 3D scenes can lead to noise accumulation, due
to errors in monocular depth and alignment of geometry.
Hence, unlike concurrent work LucidDreamer [14], we do
not limit our scene generation to our initialization step. We
rely on our inpainting distillation loss to produce highly co-
hesive 3D scenes, by distilling across multiple views, rather
than building a scene incrementally. We also note that while
LucidDreamer does use 3DGS optimization, it is a more
conventional reconstruction-based optimization, with no in-
painting or geometry priors incorporated. As a result, its
optimization stage is very different from our inpainting dis-
tillation, which provides rich priors for appearance and ge-
ometry at every iteration.

Further, we also avoid many limitations of prior work
such as Text2Room, which often produces scenes with
low-prompt alignment, especially those in outdoor scenes.

We attribute this to the technique deleting regions of the
mesh before inpainting, as the original technique prescribes.
When such deletions accumulate over time, they are prone
to erasing parts of the original scene defined in .. entirely.
In contrast to this, our technique maintains a simple ini-
tialization strategy and relies on a high-quality inpainting
distillation process to fill-in mission regions, without sacri-
ficing the quality of the initialized regions.

B.4. Implementation

Text2Room [26] and LucidDreamer [14] We use the
official implementation of Text2Room and LucidDreamer
on Github. To ensure a fair comparison, we estimate
depth using Marigold [30] and DepthAnything [65] as in
our technique, replacing the original IronDepth [3] and
ZoeDepth [5] respectively. The rest of the pipeline is kept
the same.

ProlificDreamer [64] and Dreamfusion [44] We use
the implementation of these baselines provided in threestu-
dio [22] and use their recommended parameters, training
for 25k and 10k steps, respectively. To ensure a fair com-
parison, we use the same poses for these baselines as our
technique.

C. Additional ablations and discussion
C.1. Use of DDIM Inversion.

During the inpainting and refinement stage (Sec 4.2, 4.3 in
the original paper), we find it helpful to obtain the noisy
latent z; using DDIM inversion [59], where z = £(z), z
is the rendered image, and ¢ is a timestep corresponding to
the amount of noise added. This is similar to prior work
on 2D/3D editing and synthesis using pre-trained diffusion
models [23, 33]. We demonstrate the importance of doing
so in Fig. 10, where DDIM inversion can significantly im-
prove the detail in the optimized model. During the inpaint-
ing stage, we use 25 steps to sample an image from pure
noise, and during refinement, we use 100 steps.

C.2. Use of sharpening filter.

In Fig. 10, we also see that applying a sharpening filter to
the sampled images results in slightly more detail. We at-
tribute this to the blurry nature of some samples of the dif-
fusion model.

D. Additional Implementation Details

We intend to open-source our code upon publication. In
addition, we describe some key implementation details to
assist reproducibility.

D.1. Point Cloud Generation

Image Generation. We generate our reference image Ir.f
using a variety of state-of-the-art text-image generation



"A marble bust in a museum with pale teal walls, framed
paintings, marble patterned floor, 4k image"
~r

w/o sharpening filter ~w/o DDIM Inversion

Figure 10. We ablate the importance of DDIM Inversion and ap-
plying a sharpening filter. Asin [33], we find that DDIM inversion
allows more details to be synthesized by our method. Additionally,
we find that detail slighly increases when applying a sharpening
filter to the sampled images.

models, choosing between Stable Diffusion XL [43], Adobe
Firefly, and DALLE-3 [4].

Depth Estimation. As mentioned earlier, we use
Marigold [30] as our depth estimation model, with abso-
lute depth obtained using DepthAnything [65]. We align
the relative depth with this absolute depth by computing
the linear translation that minimizes the least squares er-
ror between them. Since DepthAnything provides separate
model weights for indoor and outdoor scenes, we use GPT-
4 to decide which checkpoint to use by passing I,.s as
input. When iteratively growing the point cloud, we fol-
low Text2Room [26] and align the predicted depth with the
ground truth depth rendered via Pytorch3D [48] for all re-
gions with valid geometry. We additionally blur the edges
of these regions to lower the appearance of seams at this
intersection.

Growing the pointcloud beyond P,.;. After lifting the
reference image I,y to a pointcloud P, we additionally cre-
ate new points from neighbouring poses P, as mentioned
earlier. In practice, we notice that using the same prompt
P.cs across all neighbouring poses Py, can lead to poor
results, as objects mentioned in the prompt get repeated.
Hence, we use GPT-4 to compute a new suitable prompt
that can represent the neighbouring views of P,..r. Specifi-
cally, we pass the reference image I,.. ¢, the original prompt
T)cs and ask GPT-4 to provide a new prompt 7}, that can
be suitable for neighbouring regions. For instance, when
viewing a “car in a dense forest”, T, may correspond to
a "dense forest”.

D.2. Occlusion Volume Computation

We compute the occlusion volume O with Bresenham’s
line-drawing algorithm. First, we initialize an occupancy
grid G using the point cloud P from stage 1. We also store
whether any voxel is occluded with respect to P,y within
the same occupancy grid, initially settings all voxels as oc-
cluded. Then, we draw a line from the position of the refer-
ence camera 1. ¢ to all voxels in the occupancy grid G, iter-
ating over the voxels covered by this line and marking all as
non-occluded until we encounter an occupied voxel. Once
the algorithm terminates, all voxels that are untouched by
the line-drawing algorithm form our occlusion volume O.

D.3. Optimization

Hyperparameter Weights. We set Ajyene = 0.1, Aanchor =
10000 during the inpainting stage, and Apen =
0.01, Aynchor = O during the refinement stage. The other
parameters are set as Aimage = 0.01, Appips = 100, Ageptn =
1000, and Agpacity = 10.

Use of Dreambooth during fine-tuning. While fine-
tuning the output from stage 2, we use Dreambooth [51] to
personalize the text-to-image diffusion model with the ref-
erence image I,y and associated prompt 7. ;. We find that
this helps the final 3D model adhere closer to I,..¢ stylis-
tically. We use the implementation of Dreambooth from
HuggingFace and train at a resolution of 512x512 with a
batch size of 2, with a learning rate of 1e-6 for 200 steps.

Opacity Loss. We compute the opacity loss as the binary
cross entropy of each splat’s opacity o; with itself. This
encourages the opacity to reach either O or 1.

Gaussian Splatting. We initialize our gaussian splat-
ting model during the inpainting stage, using the point cloud
from stage 1, where each point is an isotropic gaussian, with
the scale set based on the distance to its nearest neighbors.
During the inpainting stage, we use a constant learning rate
of 0.01 for rotation, 0.001 for the color, and 0.01 for opac-
ity. The learning rate of the geometry follows an exponen-
tially decaying scheduler, which decays to 0.00005 from
0.01 over 100000 steps, after 5000 warmup steps. Similarly,
the scale is decayed to 0.0001 from 0.005 over 10000 steps,
after 7000 warmup steps. During the refinement stage, we
use a constant learning rate of 0.01 for rotation, 0.001 for
the color, 0.01 opacity, and 0.0001 for scale. We use an ex-
ponentially decaying scheduler for the geometry, which de-
cays to 0.0000005 from 0.0001 over 3000 steps, after 750
warmup steps. During the inpainting distillation, we also
dilate M, to improve cohesion at mask boundaries. Fur-
ther, we find it essential to mask the latent-space L2 loss, to
prevent unwanted gradients outside the masked region.
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Figure 11. Comparison of sampling from 2D inpainting models and our optimized model. Left: Renders from the point cloud
generated in stage 1. Middle (cols 2-4): Inpainted Samples of the previous render using an occlusion-based inpainting mask and Stable
Diffusion [50]. Right: A render from our final 3DGS model for the corresponding scene. We find that our distillation techniques produce
results with high cohesion while avoiding many artifacts from ancestral sampling of 2D inpainting models.

E. User Study

For comparison with ProlificDreamer [64], DreamFu-
sion [44], and LucidDreamer [14], we showed participants
side-by-side videos comparing our method to the base-
line. For fairness, we use the same camera trajectory in all
videos. The order of the videos was also randomized to pre-
vent any biases due to the order of presentation. The user’s
preference was logged along with a brief explanation.

When comparing with Text2Room [26], instead of a
video, we showed users side-by-side sets of three multiview
images for each prompt, due to the degeneracy of the out-
put mesh far from the starting camera pose. The user’s pre-
ferred triplet was logged along with their brief explanation.
The images we showed looked slightly left and right of the
reference pose Pr.

E.1. Common themes of the user study.

All study participants were asked to justify their preferences
for one 3D scene over the other after making their choice.
Participants were not informed about the names or the na-

ture of any technique. We also adopted method-neutral lan-
guage to avoid biasing the user to prefer any particular tech-
nique. We find that their provided reasoning closely aligns
with several noted limitations of the baselines, which we
discuss further:

ProlificDreamer [64] can produce cloudy results. Sev-
eral participants described the NeRF renders as containing
“moving clouds”, a “hazy atmosphere”, and a “blotch of
colours”. This can likely be attributed to the presence of
floaters in the model, which is evident in the noisy depth
maps shown in Appendix H. In contrast, participants de-
scribed our method as “clean and crisp when it comes to the
colors and sharpness of the pixels” and looking realistic,
without the presence of over-saturated colors.

Dreamfusion [44] lacks realism and detail. Feedback
from users when comparing with DreamFusion often mir-
rored feedback from the ProlificDreamer comparison, ref-
erencing a lack of realism and detail in the produced ren-
ders. One participant said “[Our technique] is more crisp
and does a better job with the content quality.”, while the
Dreamfusion result can “feel disjointed”. Another partici-



pant described a render as having a “distorted looking back-
ground”. In contrast to these issues, our technique syn-
thesizes realistic models with high detail and high-quality
backgrounds, with minimal blurriness.

Text2Room [26] can produce messy outputs. A com-
mon theme across feedback regarding Text2Room was that
it often looked like a mess, sometimes with a “strange dis-
tortion”. One user writes that our result is “less busy and
fits the description”. Another common reason users cited
when choosing our technique was the adherence to the input
prompt, with Text2Room often missing key objects that are
expected for an associated prompt. Our technique, however,
is capable of producing highly coherent outputs that are
faithful to the reference prompt and produce high-quality
renderings from multiple views.

LucidDreamer [14]’s scenes lack cohesion and can be
distorted. Multiple participants pointed out that Lucid-
Dreamer’s scenes degrade in quality when moving away
from the initial pose. One participant wrote “The image
on the left loses cohesion when rotated.” referring to Lu-
cidDreamer and in contrast another wrote “There is less vi-
sual distortion when the camera is moved around the room.”
about RealmDreamer. Some participants also noted that ob-
jects produced by our technique were more solid, with one
participant noting “The shapes are solid on the right and
hold their form.”. These comments underscore the limita-
tions of purely iterative approaches.

F. Additional Discussion
F.1. Impact of Distillation

In Fig. 11, we show the importance of our distillation pro-
cess for filling in occluded regions and the challenge in do-
ing so. Column 1 shows renders following stage 1, which
contains large holes, giving objects a thin look (such as the
bear in row 2 or the table in row 1). By computing an occlu-
sion volume and obtaining inpainting masks, we can inpaint
these renders to obtain several inpainted samples (columns
2-4). However, these samples can contain several artifacts.
For instance, in row 1 of Fig. 11, the surface of the table
is quite cluttered in individual samples. This is likely due
to the challenge of inpainting images with complex masks
that are out of distribution. These images also show the
challenge in building cohesive scenes with single view in-
painting. For instance the blackboard in row 2 has multi-
ple shades of green in the 2D samples. Despite these chal-
lenges, our final render for the scene, in column 5 of Fig. 11
is clean and free of stray artifacts such as bright colours or
ambiguous objects. We attribute this difference to our dis-
tillation process.

As mentioned earlier, since we optimize over multiple
views, we are less susceptible to artifacts present in indi-
vidual samples and can produce 3D inpaintings that satisfy

Input Image Render Render

Figure 12. Janus Problem due to multi-view optimization.
Since we optimize over multiple-views, sometimes the final model
can show the same object multiple times to satisfy all views, such
as the pair of glasses above the octopus. Prompt: “A blue octopus
wearing glasses on a couch in the living room, watercolor style”

multiple views. Prior work, such as Text2Room [26] in-
stead relies primarily on dilating masks and deleting regions
of generated scenes to simplify the inpainting process. Our
inpainting distillation process does not require any aggres-
sive modification to the scene but can produce high-quality
results. We highly encourage the viewer to view the video
renderings to appreciate the extent of occluded regions that
our distillation technique generates.

G. Limitations

Janus Problem. By adopting a distillation based approach,
we occasionally encounter the Janus problem, where the
face of an object appears multiple times across renders. An
example is shown in Fig. 12 As we focus on scene genera-
tion and additionally condition on the 3D scene, this is less
pronounced than in object generation [44] and can likely be
alleviated with view-dependent prompting [2].

Artifacts in rendering. Some scenes also display ar-
tifacts at the surface of objects over a wide baseline. We
believe improvements to our 3DGS implementation, such
as by incorporating anti-aliasing, and surface regularizers
might help with this. We note that our results are still sig-
nificantly better than prior work and uses only 2D priors.

H. Additional Qualitative Results

In the following pages, we show qualitative results from our
technique as well as all baselines.



LucidDreamer

—

:

w

b
(=)

Q =
:

@]

-
(ol

DreamFusion

Text2Room

‘V

Prompt: ”An astronaut in a cave, trending on artstation, 8k
image”




ours

LucidDreamer

ProlificDreamer

DreamFusion

Text2Room

Prompt: “Editorial Style Photo, Coastal Bathroom, Claw-
foot Tub, Seashell, Wicker, Mosaic Tile, Blue and White”



ours

LucidDreamer

ProlificDreamer

DreamFusion

Text2Room

Prompt: ”A minimalist bedroom, 4K image, high resolu-
tion”
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Prompt: ”A bear sitting in a classroom with a hat on, realis-
tic, 4k image, high detail”
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Prompt: ”An old car overgrown by vines and weeds, high
quality image, photorealistic, 4k image”
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Prompt: ”"Small lavender room, soft lighting, unreal engine
render, voxels.”
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Text2Room

Prompt: A thick elven forest, fantasy art, landscape, pic-
turesque, 4k image”
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Prompt: ”A sunny royal traditional Japanese bedroom, 4k
image, ornate, high detail”
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Prompt: ”An old charming stone kitchen, 4k image, photo-
realistic, high detail”
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Prompt: ” surrounded by a
world of ice and snow, shining with a mystical light under
the aurora borealis, 4k, sharp”
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Prompt: ”A majestic peacock, surfing a tall wave, photore-
alistic, detailed image, 4k image”



LucidDreamer

ProlificDreamer

DreamFusion

Text2Room

Prompt: ”A victorian living room with a grand fireplace and

a long sofa, painting over the fireplace, mysterious vibe, gi-
ant windows, 4k image, photorealistic”
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